
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2015
www.genome-scale.info

Exercises for Chapter 11. Genome analysis and comparison

11.1 Give an algorithm to construct the indicator bitvector I of Algorithm 11.2 in O((m+
n) log σ) time and O((m+ n) log σ) bits of space.

11.2 Modify the algorithm for maximal unique matches on two strings to use two bidi-
rectional indexes instead of the indicator bitvector as in our solution for maximal
exact matches.

11.3 Recall the algorithm to compute maximal unique matches for multiple strings through
document counting in Section 8.4.3. It is possible to implement this algorithm using
O(n log σ) bits of space and O(n log σ log n) time, but this requires some advanced
data structures not covered in this book. Assume you have a data structure for
solving the dynamic partial sums problem, that is, to insert, delete, and query el-
ements of a list of non-negative integers, where the queries ask to sum values up
to position i and to find the largest i such that the sum of values up to i is at
most a given threshold x. There is a data structure for solving the updates and
queries in O(log n) time using O(n log σ) bits of space, where n is the sum of the
stored values. Assume also that you have a succinct representation of LCP values.
There is a representation that uses 2n bits, such that the extraction of LCP[i] takes
the same time as the extraction of SA[i]. Now, observe that the suffix array and
the LCP array, with some auxiliary data structures, are sufficient to simulate the
algorithm without any need for explicit suffix trees. Especially, differences between
consecutive entries of string and node depths can be stored with the dynamic partial
sums data structure. Fill in the details of this space-efficient algorithm.

11.4 Prove Theorem 11.7 assuming that in the output a minimal absent word aWb is
encoded as a triplet (i, j, |W |), where i (respectively j) is the starting position of an
occurrence of aW in S (respectively Wb in S).

11.5 Prove that only a maximal repeat of a string S ∈ [1..σ]+ can be the infix W of a
minimal absent word aWb of S, where a and b are characters in [1..σ].

11.6 Show that the number of minimal absent words in a string of length n over an
alphabet [1..σ] is O(nσ). Hint. Use the result of the previous exercise.

11.7 A σ-ary de Bruijn sequence of order k is a circular sequence of length σk that
contains all the possible k-mers over alphabet Σ = [1..σ]. It can be constructed
by spelling all the labels in an Eulerian cycle (a cycle that goes through all the
edges) of a de Bruijn graph with parameters Σ and k. The sequence can be easily
transformed into a string (non-circular sequence) of length σk + k− 1 that contains
all the possible k-mers over alphabet Σ.

a) Describe the transformation from circular sequence to string.

b) Show that the number of minimal absent words in this string is σk+1.

1

11.8 Assume that you have a set of local alignments between two genomes A and B, with
an alignment score associated with each alignment. Model the input as a bipartite
graph where overlapping alignments in A and in B form a vertex, respectively, to two
sides of the graph. Alignments form weighted edges. Which problem in Chapter 5
suits the purpose of finding anchors for rearrangement algorithms?

11.9 Recall that the formula pS(W) = fF (W)/(|S| − |W | + 1) used in Section 11.2 to
estimate the empirical probability of substring W of S assumes that W can occur
at every position of T . Describe a more accurate expression for pS(W) that takes
into account the shortest period of W .

11.10 The Jaccard distance between two sets S and T is defined as J(S, T) = |S ∩
T |/|S ∪ T |. Adapt the algorithms in Section 11.2.1 to compute J(S, T), both in
the case where S and T are the sets of all distinct k-mers that occur in S and in T ,
respectively, and in the case in which S and T are the sets of all distinct substrings,
of any length, that occur in S and in T , respectively.

11.11 Adapt Lemma 11.11 to compute a variant of the k-mer kernel in which Sk[W] =
pS(W) and Tk[W] = pT (W) for every W ∈ [1..σ]k.

11.12 Adapt Corollary 11.13 to compute a variant of the substring kernel in which S∞[W] =
pS(W) and T∞[W] = pT (W) for every W ∈ [1..σ]k.

11.13 Given a string S on alphabet [1..σ] and a substring W of S, let right(W) be
the set of characters that occur in S after W . More formally, right(W) = {a ∈
[1..σ] | fS(Wa) > 0}. The kth order empirical entropy of S is defined as follows:

H(S, k) =
1

|S|
∑

W∈[1..σ]k

∑
a∈right(W)

fS(Wa) log

(
fS(W)

fS(Wa)

)
.

Intuitively, H(S, k) measures the amount of uncertainty in predicting the character
that follows a context of length k, thus it is a lower bound for the size of a compressed
version of S in which every character is assigned a codeword that depends on the
preceding context of length k. Adapt the algorithms in Section 11.2.1 to compute
H(S, k) for k ∈ [k1..k2] using the bidirectional BWT index of S, and state the
complexity of your solution.

11.14 Let S and T be two strings on alphabet [1..σ], and let S and T be their compo-
sition vectors indexed by all possible k-mers. When the probability distribution
of characters in [1..σ] is highly nonuniform, the inner product between S and T
(also known as the D2 statistic) is known to be dominated by noise. To solve
this problem, raw counts are typically corrected by expected counts that depend

on p(W) =
∏|W |
i=1 p(W [i]), the probability of observing string W if characters at

different positions in S are independent, identically distributed, and have empir-
ical probability p(a) = fST (a)/(|S| + |T |) for a ∈ [1..σ]. For example, letting
S̃[W] = S[W]− (|S|−k+ 1)p(W), the following variants of D2 have been proposed:

Ds
2 =

∑
W∈[1..σ]k

S̃[W]T̃[W]√
S̃[W]2 + T̃[W]2

,

D∗2 =
∑

W∈[1..σ]k

S̃[W]T̃[W]√
(|S| − k + 1)(|T | − k + 1) · p(W)

.

2

Adapt the algorithms described in Section 11.2.1 to compute Ds
2, D∗2, and similar

variants based on p(W), using the bidirectional BWT index of S and T , and state
their complexity.

11.15 Show how to implement the computations described in Insight 11.3 using the bidi-
rectional BWT index of S ∈ [1..σ]n. More precisely, do the following.

a) Show how to compute the number of distinct k-mers that appear at least twice
(repeating k-mers) in time O(n log σ) and space O(n log σ) bits.

b) Suppose that we want to compute the number of repeating k-mers for all values
of k in a given range [k1..k2]. A naive extension of the algorithm in (a) would
take time O((k1− k2)n log σ) and it would use an additional O((k1− k2) log n)
bits of space to store the result. Show how to improve this running time to
O(n log σ), using the same space.

c) Show how to compute the Kullback–Leibler divergence described in Insight
11.3, simultaneously for all values of k in [k1..k2], in time O(n log σ) and an
additional O(k1 − k2) computer words of space to store the result.

11.16 Assume that vectors S and T have only two dimensions. Show that Equation (11.1)
is indeed the cosine of the angle between S and T.

11.17 Write a program that computes all kernels and complexity measures described in
Section 11.2.1, given the suffix tree of the only input string, or the generalized suffix
tree of the two input strings.

11.18 Adapt the algorithm in Section 11.2.2 to compute the substring kernel with Marko-
vian corrections in O(n log σ) time and space, where n is the sum of the lengths of
the input strings.

11.19 Given strings W and S, and characters a and b on an alphabet Σ = [1..σ], con-
sider the following expected probability of observing aWb in S, analogous to Equa-
tion (11.2):

p̃W,S(a, b) =
pS(aW) · pS(Wb)

pS(W)
.

Moreover, consider the Kullback–Leibler divergence between the observed and ex-
pected distribution of p̃W,S over pairs of characters (a, b):

KLS(W) =
∑

(a,b)∈Σ×Σ

pW,S(a, b) · ln
(
pW,S(a, b)

p̃W,S(a, b)

)
,

where we set ln(pW,S(a, b)/p̃W,S(a, b)) = 0 whenever p̃W,S(a, b) = 0. Given strings S
and T , let S and T be infinite vectors indexed by all strings on alphabet [1..σ], such
that S[W] = KLS(W) and T[W] = KLT (W). Describe an algorithm to compute the
cosine of vectors S and T as defined in Equation (11.1).

11.20 Recall that the shortest unique substring array SUSS [1..n] of a string S ∈ [1..σ]n is
such that SUSS [i] is the length of the shortest substring that starts at position i in
S and that occurs exactly once in S.

(a) Adapt to SUSS the left-to-right and right-to-left algorithms described in Sec-
tion 11.2.3 for computing matching statistics.

3

(b) Describe how to compute SUSS by an O(n) bottom-up navigation of the suffix
tree of S.

11.21 Show how to compute
∑|W |

j=|`(u)|+1 α(W [1..j]) in constant time for all the weighting

schemes described in Section 11.2.3. More generally, show that if α(W) depends
just on the length of W rather than on its characters, and if α(W) = 0 for |W |
bigger than some threshold τ , we can access

∑|W |
j=|`(u)|+1 α(W [1..j]) in constant time

after an O(τ)-time and O(τ log τ)-space precomputation.

11.22 Let S and T be strings, and let D = {d1, d2, . . . , dk} be a fixed set of strings
with weights {w1, w2, . . . , wk}. Show how to compute the kernel κ(S, T) in Equa-
tion (11.4) restricted to the strings in D, using matching statistics and with the
same time complexity as that of Theorem 11.22.

11.23 Given strings S and T and a window size w ∈ [1..|S|−1], describe an algorithm that
computes the kernel κ(S[i..i+w−1], T) in Equation (11.4) for all i ∈ [1..|S|−w+1],
performing fewer than m operations per position. Hint. Adapt the approach in
Theorem 11.22.

11.24 Consider the suffix-link tree SLTT of a string T , augmented with implicit Weiner
links and their destinations. Describe an algorithm that adds to the suffix tree STT
a node for every label W of a node in SLTT (if string W is not already the label of
a node in STT), and that adds to every node of this augmented suffix tree a pointer
to its closest ancestor labeled by a string in SLTT . The relationship between SLTT
and STT is further explored in Exercise 8.19.

11.25 Given two k-mers V and W on alphabet [1..σ], recall that DH(V,W) is the Hamming
distance between V and W , and that B(W,m) is the subset of [1..σ]k that lies at
Hamming distance at most m from W . Give a closed-form expression for the size
of B(V,m) ∩B(W,m) for every possible value of DH(V,W) when m = 2.

11.26 Given a string S on alphabet [1..σ], and given a string W of length k, let fS(W,m)
be the number of substrings of S of length k+m that contain W as a subsequence.
Consider the following gapped kernel between two strings S and T :

κ(S, T, k,m) =
∑

W∈[1..σ]k

fS(W,m) · fT (W,m).

Adapt the approach described in Section 11.2.4 to compute the gapped kernel, and
state its complexity.

11.27 In the neighborhood kernel, the similarity of two strings S and T is expressed in terms
of the similarities of their neighborhoods N(S) and N(T), where N(S) contains
a given set of strings that the user believes to be similar or related to S. The
neighborhood kernel is defined as

κN (S, T) =
∑

U∈N(S)

∑
V ∈N(T)

κ(U, V),

where κ(U, V) is a given kernel. Describe how to adapt the approaches described in
Section 11.2.4 to compute the neighborhood kernel.

11.28 Prove that C(ST) + C(U) ≤ C(SU) + C(TU), by using the symmetry of C.

11.29 Complete the proof of Theorem 11.31 with the two missing cases, using the dis-
tributivity of C.

4

Additional exercises not in the book

11.30 Simulate Algorithm 11.1 (maximal repeat computation using the bidirectional BWT
index) on text TACAGACAC.

11.31 Read the paper

• Richard Durbin. Efficient haplotype matching and storage using the posi-
tional Burrows-Wheeler transform (PBWT). Bioinformatics, 30(9): 1266-1272
(2014). http://dx.doi.org/10.1093/bioinformatics/btu014.

What is the difference between PBWT and normal BWT? How is the input to the
algorithm produced?

5

