
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2015
www.genome-scale.info

Exercises for Chapter 12. Genome compression

12.1 Recall from Exercise 11.7 that a σ-ary de Bruijn sequence of order k is a string
of length σk + k − 1 over an alphabet of size σ that contains as substrings all the
σk possible strings of length k. What is the number of phrases in the Lempel–Ziv
parse of such a sequence? What does this tell you about the asymptotic worst-case
complexity of a Lempel–Ziv parse? Hint. Combine your result with Lemma 12.2.

12.2 Consider the solution of Exercise 12.1. Is the size of the Lempel-Ziv parse of a
string a good approximation of its Kolmogorov complexity, roughly defined in Sec-
tion 11.2.5?

12.3 Show how to build in linear time the augmented suffix tree used in Section 12.1.1.

12.4 Show how to build the vector R described in Section 12.1.1 in O(n log σ) time and
in O(n log σ) bits of space.

12.5 Prove Lemma 12.5 shown in Section 12.1.2.

12.6 Consider a generalization of Lempel–Ziv parsing where a phrase can point to its
previous occurrence as a reverse complement. Show that the space-efficient parsing
algorithms of Section 12.1 can be generalized to this setting. Can you modify also
the bit-optimal variant to cope with reverse complements?

12.7 Prove the monotonicity of cost property for parse graphs described in Section 12.2.

12.8 Prove Lemma 12.12 by contradiction, working on the shortest path P = vx1vx2 . . . vxm

of the parse graph G such that its first nonmaximal arc (vxi , vxi+1) occurs as late as
possible.

12.9 Prove Theorem 12.13, using the algorithm for computing the single-source shortest
path in a DAG described in Section 4.1.2.

12.10 Consider all arcs in the parse graph G of Definition 12.10 that start from a given
vertex, and let bi1 , bi2 , . . . , bik be a partition of such arcs into equivalence classes
according to the number of bits required to encode their copy distances using encoder
f . Describe an algorithm that, given the length of the distance-maximal arc of class
bip and the length of the distance-maximal arc of the previous class bip−1 , where
p ∈ [2..k], returns all the length-maximal arcs inside class bip , in constant time per
length-maximal arc.

12.11 Recall from Section 12.2 the relationship between the length `e of a distance-
maximal arc e and the LCP of the suffixes of S that start at those positions which
are addressable with the number of bits used to encode the copy distance de of arc
e. Prove this property, using the definition of a distance-maximal arc.

1

12.12 With reference to Lemma 12.18, show that sorting the set of suffixes S′[h..|S|]#
with h ∈ [p..q] coincides with computing the suffix array of string W .

12.13 Adapt Lemma 12.18 to the case in which source and target do not intersect. Hint.
Sort the suffixes that start inside each of the two intervals separately, and merge
the results using LCP queries.

2

