
GENOME-SCALE ALGORITHM DESIGN
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Exercises for Chapter 15. Transcriptomics

15.1 Work out the calculations for deriving the system of equations (15.3), using the
formula

∂ (wi − αi,1e1 − αi,2e2 − · · · − αi,kek)2

∂ej
=2 (wi − αi,1e1 − αi,2e2 − · · · − αi,kek) ·

·
∂ (wi − αi,1e1 − αi,2e2 − · · · − αi,kek)

∂ej

=− 2αi,j (wi − αi,1e1 − αi,2e2 − · · · − αi,kek) .

15.2 Formalize the exon detection phase described on page 329 using HMMs (recall
Insight 14.1 and Chapter 7).

15.3 Consider the following version of Problem 15.3 in which there are no costs associated
with the arcs for the DAG and in which we need to cover only a given collection of
paths. Given a DAG G = (V,E), a set S ⊆ V of possible start vertices, a set T ⊆ V
of possible end vertices, and a collection P in = {P in1 , . . . , P int } of directed paths in
G, find the minimum number k of paths P sol1 , . . . , P solk such that

• every P soli starts in some vertex of S and ends in some vertex of T ,

• every path P in ∈ P in is entirely contained in some P soli .

Assume also that no P ini is entirely included in another P inj (otherwise P ini can

be removed from P in). Show that this problem can be solved by a reduction to a
minimum-cost flow problem (without having to iteratively merge paths with longest
suffix-prefix overlaps). What features does the resulting flow network have? Can
you apply a specialized minimum-cost flow algorithm with a better complexity for
such a network?

15.4 Given an input for the problem of transcript assembly with paired-end reads, show
that we can decide in polynomial time whether it admits a solution with two paths,
and if so, find the two solution paths.

15.5 Using the reduction in the proof of Theorem 15.4, conclude that there exists for no
ε > 0 an algorithm returning a solution with k paths for the problem of transcript
assembly with paired-end reads, where k is greater than the optimal number of
paths by a multiplicative factor 4

3 − ε.

15.6 Argue that the reduction of Problem 15.5 to a network flow problem with convex
costs presented on page 338 is correct.

15.7 Show that the function g defined in (15.7) on page 340 is a flow on G, namely that
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• for all y ∈ V (G) \ (S ∪ T ),
∑

x∈N−(y) g(x, y) =
∑

x∈N+(y) g(y, x);

•
∑

s∈S
∑

y∈N+(s) g(s, y) =
∑

t∈T
∑

x∈N−(t) g(x, t).

15.8 Explain what changes need to be made to the flow network N , if in Problem 15.6
we also get in the input a coefficient α(x, y) for every arc (x, y) of G, and we are
asked to find the paths and their expression levels which minimize

∑
(x,y)∈E

α(x, y)

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣ .

15.9 Consider a variant of Problem 15.6 in which we want to minimize the absolute
differences between the total coverage (instead of the average coverage) of an exon
and its predicted coverage. Explain how this problem can be reduced to the one in
Exercise 15.8 above, for an appropriately chosen function α.

15.10 Adapt the reduction to a minimum-cost flow problem from Section 15.3 to solve
the following problem. Given a DAG G = (V,E), a set S ⊆ V of possible start
vertices, a set T ⊆ V of possible end vertices, and a weight function w : E → Q+,
find a collection of paths P1, . . . , Pk in G, and their corresponding expression levels
e1, . . . , ek, such that

• every Pi starts in some vertex of S and ends in some vertex of T ,

and the following function is minimized:

∑
(x,y)∈E

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣+ λ

k∑
i=1

ei.

What can you say about the problem in which we use the squared difference, instead
of the absolute value of the difference?

15.11 Show that the following problem is NP-hard, for any fixed β ≥ 1. Given a DAG
G = (V,E), a set S ⊆ V of possible start vertices, a set T ⊆ V of possible end
vertices, a weight function w : E → Q+, and an integer k, find a collection of paths
P1, . . . , Pk in G, and their corresponding expression levels e1, . . . , ek, such that

• every Pi starts in some vertex of S and ends in some vertex of T ,

and the following function is minimized:

∑
(x,y)∈E

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣
β

.

Hint. Use Theorem 5.3 or its proof.

15.12 Show that, given k ≥ 1 and given e1, . . . , ek, the following problem is solvable in
time O(n2k+2). Given a DAG G = (V,E), a set S ⊆ V of possible start vertices, a
set T ⊆ V of possible end vertices, weight function w : E → Q+, and an integer k,
find a collection of paths P1, . . . , Pk in G, such that:
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• every Pi starts in some vertex of S, and ends in some vertex of T ,

and the following function is minimized

∑
(x,y)∈E

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣ . (1)

Hint. Use dynamic programming and consider the optimal k paths ending in every
tuple of k vertices.

15.13 Show that, given an error function δ : Q+ × Q+ → Q+, the problem considered in
Exercise 15.12 in which the objective function the above equation (1) is replaced
with ∑

(x,y)∈E

δ

w(x, y),
∑

j : (x,y)∈Pj

ej

 (2)

is solvable with the same time complexity O(n2k+2) (assuming δ is computable in
time O(1)).

15.14 Consider the following problem of transcript assembly and expression estimation
with outliers, in which the weights of the arcs not belonging to any solution path
do not contribute in the objective function. Given k ≥ 1, a DAG G = (V,E), a
set S ⊆ V of possible start vertices, a set T ⊆ V of possible end vertices, a weight
function w : E → Q+, and an integer k, find a collection of paths P1, . . . , Pk in G,
such that

• every Pi starts in some vertex of S and ends in some vertex of T ,

and the following function is minimized:

∑
(x,y): exists Pi with (x,y)∈Pi

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣ .
Show that this problem is NP-hard. Hint. Use Theorem 5.3 or its proof.

15.15 Reduce the problem of transcript assembly and expression estimation with outliers
from Exercise 15.14 to the generalized problem from Exercise 15.13, by showing an
appropriate error function δ.

15.16 Prove that the co-linear chaining algorithm works correctly even when there are
tuples containing other tuples in T or in R, that is, tuples of type (x, y, c, d) and
(x′, y′, c′, d′) such that either x < x′ ≤ y′ < y or c < c′ ≤ d′ < d (or both).

15.17 Modify the co-linear chaining algorithm to solve the following variations of the
ordered coverage problem.

a) Find the maximum ordered coverage of R such that all the tuples involved in
the coverage must overlap in R.

b) Find the maximum ordered coverage of R such that the distance in R between
two consecutive tuples involved in the coverage is at most a given threshold
value α.
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c) Find the maximum ordered coverage of R such that the distance in T between
two consecutive tuples involved in the coverage is at most a given threshold
value β.

15.18 Co-linear chaining gives a rough alignment between the transcript and the genome
as a list of subregion correspondences. Consider how this rough alignment can be
fine-grained into a sequence level alignment.
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