
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2015
www.genome-scale.info

Exercises for Chapter 2. Algorithm design

2.1 Consider the fail(·) function of the Morris–Pratt (MP) algorithm. We should
devise a linear-time algorithm to compute it on the pattern to conclude the linear-
time exact pattern matching algorithm. Show that one can modify the same MP
algorithm so that on inputs P = p1p2 · · · pm and T = p2p3 · · · pm#m, where #m

denotes a string of m concatenated endmarkers #, the values fail(2), fail(3), . . . ,
fail(m) can be stored on the fly before they need to be accessed.

2.2 The Knuth–Morris–Pratt (KMP) algorithm is a variant of the MP algorithm with
optimized fail(·) function: fail(i) = i′, where i′ is largest such that p1p2 · · · pi′ =
pi−i′+1pi−i′+2 · · · pi, i′ < i, and pi′+1 6= pi+1. This last condition makes the difference
from the original definition. Assume you have the fail(·) function values computed
with the original definition. Show how to update these values in linear time to satisfy
the KMP optimization.

2.3 Generalize KMP for solving the multiple pattern matching problem, where one is
given a set of patterns rather than only one as in the exact string matching problem.
The goal is to scan T in linear time so as to find exact occurrences of any pattern in
the given set. Hint. Store the patterns in a tree structure, so that common prefixes
of patterns share the same subpath. Extend fail(·) to the positions of the paths in
the tree. Observe that unlike in KMP, the running time of the approach depends
on the alphabet size σ. Can you obtain scanning time O(n log σ)? Can you build
the required tree data structure in O(M log σ) time, where M is the total length of
the patterns? On top of the O(n log σ) time for scanning T , can you output all the
occurrences of all patterns in linear time in the output size?

2.4 Show that a certificate for the Hamiltonian path problem can be checked in time
O(n) (where n is the number of vertices) assuming an adjacency representation of
the graph that uses O(n2) bits. Hint. Use a table of n integers that counts the
number of occurrences of the vertices in the given certificate.

2.5 Suppose that we can afford to use no more than O(m) space to represent the adja-
cency list. Show that a certificate for the Hamiltonian path can now be checked in
time O(n log n).

2.6 Find out how bit-manipulation routines are implemented in your favorite program-
ming language. We visualize below binary representations of integers with the
most-significant bit first. You might find useful the following examples of these
operations:

• left-shift : 0000000000101001<< 2 = 0000000010100100,

• right-shift : 0000000010100100>> 5 = 0000000000000101,

• logical or : 0000000000101001 | 1000001000001001 = 1000001000101001,

1



• logical and : 0000000000101001 & 1000001000001001 = 0000000000001001,

• exclusive or : 0000000000101001⊕ 1000001000001001 = 1000001000100000,

• complement : ∼0000000000101001 = 1111111111010110,

• addition: 0000000000101001 + 0000000000100001 = 0000000001001010, and

• subtraction: 0000000000101001− 0000000000100001 = 000000000001000,
000000000001000− 000000000000001 = 000000000000111.

These examples use 16-bit variables (note the overflow). Show two different ways
to implement a function mask(B, d) that converts the d most significant bits of a
variable to zero. For example, mask(1000001000001001, 7) = 0000000000001001.

2.7 Implement with your favorite programming language a fixed-length bit-field array.
For example, using C++ you can allocate with

A=new unsigned[(n*k)/w+1]

an array occupying roughly n ·k bits, where w is the size of the computer word (un-
signed variable) in bits and k < w. You should provide operations setField(A,i,x)
and x=getField(A,i) to store and retrieve integer x from A, for x whose binary
representation occupies at most k bits.

2.8 Implement using the above fixed-length bit-field array an O(n log n)-bit represen-
tation of a node-labeled static tree, supporting navigation from the root to the
children.

2.9 Recall how stack, queue, and deque work. Implement them using your favorite
programming language using doubly-linked lists.

2.10 Given an undirected graph G, a subset S ⊆ V (G) is called an independent set if
no edge exists between the vertices of S. In the independent-set problem we are
given an undirected graph G and an integer k and are asked whether G contains an
independent set of size k. Show that the Independent set problem is NP-complete.

2.11 A Boolean formula f(x1, . . . , xn) is in 3-CNF form if it can be written as

f(x1, . . . , xn) = c1 ∧ · · · ∧ cm,

where each ci is yi,1∨yi,2∨yi,3, and each yi,j equals xk or ¬xk, for some k ∈ {1, . . . , n}
(with yi,1, yi,2, yi,3 all distinct). The subformulas ci are called clauses, and the
subformulas yi,j are called literals. The following problem, called 3-SAT, is known
to be NP-complete. Given a Boolean formula f(x1, . . . , xn) in 3-CNF form, decide
whether there exist α1, . . . , αn ∈ {0, 1} such that f(α1, . . . , αn) is true (such values
αi are called a satisfying truth assignment).

Consider as “new” problem the clique problem from Example 2.3. Show that clique
is NP-complete by constructing a reduction from 3-SAT. Hint. Given a 3-CNF
Boolean formula

f(x1, . . . , xn) = (y1,1 ∨ y1,2 ∨ y1,3) ∧ · · · ∧ (ym,1 ∨ ym,2 ∨ ym,3),

construct the graph Gf as follows (see Figure 1 for an example):

• for every yi,j , i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}, add a vertex yi,j to Gf ;

• for every yi1,j and yi2,k with i1 6= i2 and yi1,j 6= ¬yi1,k, add the edge (yi1,j , yi2,k).

Show that f has a satisfying assignment if and only if Gf has a clique of size m.

2



x1

x2

x3

x1 ¬x2 ¬x3

¬x1

x2

¬x3

c1 c3

c2

f(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

Figure 1: A reduction of the 3-SAT problem to the clique problem. A clique in Gf is
highlighted; this induces either one of the truth assignments (x1, x2, x3) = (1, 1, 0) or
(x1, x2, x3) = (1, 1, 1).

Additional exercises not in the book

2.12 In Exercise 2.11 above we have reduced the “old” problem 3-SAT to the “new”
problem clique. Devise an opposite reduction, that is, show that the clique problem
can be reduced in polynomial time to the 3-SAT problem. Hint. Suppose we are
given a graph G on n vertices v1, . . . , vn, and we are asked whether G contains a
clique with k vertices. For every vertex vi and for every j ∈ {1, . . . , k}, introduce a
Boolean variable xi,j with the meaning “vertex vi is the jth vertex of the clique of
size k”. What is the corresponding Boolean formula on the variables xi,j?

3


