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Exercises for Chapter 3. Data structures
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Give an example of a perfectly balanced binary search tree storing eight (key,value)
pairs in its leaves as described in Lemma 3.1. Give an example of a range minimum
query for some non-empty interval.

Give a pseudo-code for the algorithm to construct and initialize a balanced binary
search tree given the sorted keys.

Recall how red-black trees work. Revisit the proof of Lemma 3.1 and consider how
the tree can be maintained correctly updated for RMQ queries during the rebalancing
operations needed if one adds the support for Insert and Delete.

Instead of taking the minimum among the values in Lemma 3.1 one could take
a sum. If all leaves are initialized to value 1, what question does the operation
analogous to RMQ answer?

Consider the sets V' and V" in the proof of Lemma 3.1. The subtrees rooted at
nodes in V’ and V" induce a partitioning of the set of characters appearing in the
interval [I..r] (see Figure 3.1 from the book). There are many other partitionings of
[l..r] induced by different subsets of nodes of the tree. Why is the one chosen in the
proof the minimum size partitioning? Are there other partitionings that could give
the same running time?

A van Emde Boas tree (VEB tree) supports in O(loglog n) time insertions, deletions,
and predecessor queries for values in the interval [1..n]. A predecessor query returns
the largest element 4’ stored in the vEB tree smaller than query element 7. Show
how the structure can be used instead of a balanced search tree of Lemma 3.1 to
solve range minimum queries for semi-infinite intervals (—oo..7].

Prove Theorem thm:select. Hint. Start as in rank with O(log®n) size blocks, but
this time on arguments of select;. Call these source blocks and the areas they
span in bitvector B target blocks. Define long target blocks so that there must be so
few of those that you can afford to store all answers inside the corresponding source
blocks. We are left with short target blocks. Apply the same idea recursively to
these short blocks adjusting the definition of a long target block in the second level
of recursion. Then one should be left with short enough target blocks that the four
Russians technique applies to compute answers in constant time. The solution to
select( is symmetric.

Show how to reduce the preprocessing time in Theorem 3.2 and Theorem 3.3 from
O(n) to O(n/logn), by using the four Russians technique during the preprocessing.

Consider the wavelet tree in Example 3.2. Concatenate bitvectors B,, B,, and
B,,. Give formulas to implement the example queries in Example 3.2 with just the
concatenated bitvector. Derive the general formulas that work for any wavelet tree.
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Consider the operation select.(A4,j) = i that returns the position i of the jth
occurrence of character ¢ in string A[l..n]. Show that the wavelet tree with its
bitvectors preprocessed for constant time select;(B,j) and selecto(B,j) queries
can answer select.(4,j) in O(logo) time.

Show that the operation rangeList(T,4,j,[,7) can be supported in O(dlog(c/d))
time by optimizing the given search strategy. Hint. After finding the left-most
element in the interval, go up until branching towards the second element occurs,
and so on. Observe that the worst case is when the elements are equally distributed
along the interval: see Section 8.1 for an analogous analysis.

Show how to efficiently implement the operation rangelListExtended(7,1,j,(,7)
which returns not only the distinct characters from [l..r]in T'[i..j], but also, for
every such distinct character ¢, returns the pair (rank.(7,7— 1), rank.(T, j)). Hint.
Observe that the enumeration of the distinct characters uses rank queries on binary
sequences that can also be used to compute the pairs of rank operations executed
for the distinct characters.



