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Exercises for Chapter 5. Network flows

5.1 Given an arbitrary graph G with a unique source s and a unique sink t, and given
a function f : E(G)→ Q satisfying the flow conservation property on G, show that

∑
y∈N+(s)

f(s, y) =
∑

y∈N−(t)

f(y, t).

5.2 Let G be a DAG with a unique source s and a unique sink t, and let f : E(G)→ N
satisfy the flow conservation property on G, such that the flow exiting s equals q.
Show that if there exists an integer x such that, f(e) is a multiple of x, for every
e ∈ E(G), then f can be decomposed into q/x paths, each of weight x.

5.3 Show that a flow f on an arbitrary graph G with a unique source s and a unique
sink t can be decomposed into at most |E(G)| weighted paths or cycles. How fast
can this be done?

5.4 In the 3-partition problem, we are given a set A = {a1, . . . , a3q} of 3q positive
integers, such that

•
∑3q

i=1 ai = qB, where B is an integer, and

• for all i ∈ {1, . . . , 3q} it holds that B/4 < ai < B/2.

We are asked whether there exists a partition of A into q disjoint sets, such that the
sum of the integers in each of these sets is B. This problem is known to be NP-hard,
even when the values of the 3q integers in the set A are bounded by a certain value
not depending on q (it is called strongly NP-hard). Use a similar reduction to that
in the proof of Theorem 5.3 to show that the 3-Partition problem can be reduced to
the problem of decomposing a flow in a DAG into the minimum number of weighted
paths.

5.5 Given a weighted DAG G, show that we can find an s-t path whose bottleneck is
maximum among all s-t paths of G, in time O(|E(G)|).

5.6 Suppose that in a flow network N with a unique source and a unique sink some arcs
have infinite capacity. Show that there exists a flow f over N of minimum cost,
with the additional property that the value of f on each arc without capacity is at
most the sum of all arc capacities.

5.7 Show that the minimum-cost circulation problem can be reduced to the minimum-
cost flow problem.

5.8 Given a circulation f over a circulation network N , show that if C is a cycle in
the residual graph R(f) of f , then the circulation fC defined in Section 5.2 is a
circulation over N .
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5.9 Given a circulation network N = (G, `, u, c), consider the problem of finding a
feasible circulation over N , that is, a circulation satisfying the demand and capacity
constraints of N . Construct the circulation network N ′ as follows:

• N ′ has the same vertices as N ;

• for every arc (x, y) of N , add to N ′ two parallel arcs with demand 0: one with
cost −1 and capacity `(x, y), and one with cost 0 and capacity u(x, y)−`(x, y).

Show that N admits a feasible circulation if and only if the minimum-cost circulation
over N ′ has cost less than or equal to minus the sum of all demands of N . How can
you obtain a feasible circulation f over N from a minimum-cost circulation f ′ over
N ′?

5.10 Show that the reduction of a minimum-cost flow problem with convex costs to a
standard minimum-cost flow problem from Insight 5.2 is correct.

5.11 Given a DAG G with a unique source s and a unique sink t, show that we can find
the maximum number of s-t paths without common vertices (apart from s and t)
by a reduction to a maximum flow problem.

5.12 In the minimum flow problem, we are given a flow network N with arc demands
only, and are asked to find a flow of minimum value over N satisfying all demand
constraints. Show that the minimum flow problem can be solved by two applications
of a maximum flow problem.

5.13 Show that finding a maximum-cardinality matching in a bipartite graph can be
reduced to a minimum-cost flow problem.

5.14 Show that, among all maximum-cardinality matchings of a bipartite graph G, the
problem of finding one of minimum-cost can be reduced to a minimum-cost network
flow problem.

5.15 Suppose that you have an algorithm for solving the minimum-cost perfect matching
problem in an arbitrary graph (not necessarily bipartite). Show that, given any
graph G with costs associated with its edges, you can use this algorithm, by ap-
propriately transforming G, to find a minimum-cost maximum matching (that is, a
matching of maximum cardinality in G, with the additional property that among
all matchings of maximum cardinality, it has minimum cost).

5.16 Consider Problem 5.7 in which one is required to minimize instead∑
(x,y)∈M

c(x, y) + α
∑
y∈B
|id(y)− dM (y)|2 .

How do you need to modify the reduction given for Problem 5.7 to solve this new
problem? Does the resulting flow network still have size polynomial in the size of
the input? Hint. Use the idea from Insight 5.2.

5.17 Show that the problem of finding a minimum-cost disjoint cycle cover in an undi-
rected graph can be reduced to the problem of finding a minimum-cost disjoint cycle
cover in a directed graph.

5.18 An edge cover of an undirected graph G is a set of edges covering all the vertices of
G.
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• Show that a minimum-cost edge cover in a bipartite graph can be solved by a
minimum-cost flow problem.

• Show that a minimum-cost edge cover in an arbitrary graph G can be reduced
to the problem of finding a maximum-weight matching in G.

Additional exercises not in the book

5.19 Give an example of a directed acyclic graph which admits two decomposition into
weighted paths, each with a different number of paths.

5.20 Give an example of a directed graph G (not acyclic) with unique source s and unique
sink t, and of a flow f in G, such that f cannot be decomposed into a set of weighted
s-t paths.

5.21 Given a directed graph G with a unique source s and unique sink t, in which every
arc (x, y) has a capacity u(x, y), construct a minimum-cost flow network N in which
every arc (x, y) of G has demand 0, capacity u(x, y) and cost −1. Add the arc (s, t)
with demand 0, capacity∞ and cost 0, and set the flow value to∞. Give an example
which disproves the following claim: the minimum-cost flow in N is a maximum flow
in G with capacity function u.

5.22 Give an example of a bipartite graph G, and a non-integer-valued flow f , feasible
for the network built for the minimum-cost perfect matching problem on G, such
that f does not induce a matching in G.

5.23 Give an example of a directed acyclic graph G and of a non-integer-valued flow f ,
feasible for the network built for the minimum-cost minimum path cover problem
on G, such that f does not induce an optimal solution in G.

5.24 Consider the following simpler variant of the minimum-cost minimum path cover
problem. Given a DAG G = (V,E) with unique source s and unique sink t, a
cost function c : E → Q+, and an integer k, find k s-t paths P1, . . . , Pk form-
ing a path cover of G (i.e. each vertex of G belongs to some Pi) and minimizing∑k

i=1

∑
(x,y)∈Pi

c(x, y). Solve this problem by a reduction to a minimum-cost flow
problem.

5.25 Consider the following problem: given a directed graphG, find the minimum number
of paths (possibly with repeated vertices) that cover all the vertices of G. Give an
example of a directed graph where this number is two. Show that this problem can
be reduced to a minimum-cost flow problem.
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