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Exercises for Chapter 6. Alignments

6.1 Show that the edit distance is a metric, namely that it satisfies:

(a) D(A,B) ≥ 0,

(b) D(A,B) = 0, if and only if A = B,

(c) D(A,B) = D(B,A),

(d) D(A,B) ≤ D(A,C) +D(C,B).

6.2 Modify Algorithm 6.1 on page 74 to use only one vector of length m + 1 in the
computation.

6.3 The shortest-detour algorithm is able to compute the dynamic programming matrix
only partially. However, just allocating space for the rectangular matrix of size m×n
requires O(mn) time. Explain how one can allocate just the cells that are to be
computed. Can you do the evaluation in O(d) space, where d = D(A,B)?

6.4 Modify Myers’ bitparallel algorithm to solve the k-errors problem on short patterns.

6.5 Optimize Myers’ bitparallel algorithm to use fewer basic operations.

6.6 Write a program to automatically verify each row in the truth tables in the lemmas
proving the correctness of Myers’ bitparallel algorithm.

6.7 Write a program to automatically discover the four “easy” operations (those of the
four first lemmas) in Myers’ bitparallel algorithm.

6.8 Describe how to traceback an optimal alignment with Myers’ bitparallel algorithm.

6.9 Consider Exercise exe:hirschberg. Show that the same technique can be combined
with Myers’ bitparallel algorithm to obtain linear space traceback together with
the bitparallel speed-up. Hint. Compute the algorithm also for the reverse of the
strings. Then you can deduce jmid from forward and reverse computations. See
Section 7.4 for an analogous computation.

6.10 The four Russians technique we studied in Section 3.2 leads to an alternative way
to speed up edit distance computation. The idea is to encode each column as in
Myers’ bitparallel algorithm with two bitvectors R+

j and R−j and partition these
bitvectors to blocks of length b. Each such pair of bitvector blocks representing an
output encoding of a block di−b+1..i,j in the original dynamic programming matrix
is uniquely defined by the input parameters Ai−b+1..i, bj , di−b,j−1, and di−b,j and
the bitvector blocks representing the block di−b+1..i,j−1. Develop the details and
choose b so that one can afford to precompute a table storing for all possible input
parameters the output encoding of a block. Show that this leads to anO(mn/ logσ n)
time algorithm for computing the Levenshtein edit distance.
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6.11 Prove Theorem 6.10.

6.12 Show that the set M = M(A,B) = {(i, j) | ai = bj} which is needed for sparse
dynamic programming LCS computation, sorted in reverse column-order, can be
constructed in O(σ+ |A|+ |B|+ |M |) time on a constant alphabet and in O((|A|+
|B|) log |A|+ |M |) time on an ordered alphabet. Observe also that this construction
can be run in parallel with Algorithm 6.3 to improve the space requirement of
Theorem 6.12 to O(m).

6.13 The sparse dynamic algorithm for distance Did(A,B) can be simplified significantly
if derived directly for computing |LCS(A,B)|. Derive this algorithm. Hint. The
search tree can be modified to answer range maximum queries instead of range
minimum queries (see Section 6.4.5).

6.14 Give a pseudocode for local alignment using space O(m).

6.15 Give a pseudocode for tracing an optimal path for the maximum-scoring local align-
ment, using space quadratic in the alignment length.

6.16 Develop an algorithm for tracing an optimal path for the maximum-scoring local
alignment, using space linear in the alignment length. Hint. Let [i′..i]× [j′..j] define
the rectangle containing a local alignment. Assume you know jmid for row (i− i′)/2
where the optimal alignment goes through. Then you can independently recursively
consider rectangles defined by [i′..(i− i′)/2]× [j′..jmid] and [(i− i′)/2]× [jmid..j]. To
find jmid you may, for example, store, along with the optimum value, the index j
where that path crosses the middle row.

6.17 Prove the correctness of Algorithms 6.5 and 6.6 on pages 98 and 100.

6.18 The sequencing technology SOLiDTM from Applied Biosystems produces short reads
of DNA in color-space with a two-base encoding defined by the following matrix
(row = first base, column = second base):

A C G T

A 0 1 2 3

C 1 0 3 2

G 2 3 0 1

T 3 2 1 0

For example, T012023211202102 equals TTGAAGCTGTCCTGGA (the first base is always
given). Modify the overlap alignment algorithm to work properly in the case where
one of the sequences is a SOLiD read and the other is a normal sequence.

6.19 Show that the relative entropy used in Equation (6.15) on page 91 is non-negative.

6.20 Give a pseudocode for prokaryote gene alignment.

6.21 Give a pseudocode for eukaryote gene alignment with affine gaps.

6.22 Give a pseudocode for the O(mn · maxin) time algorithm for eukaryote gene align-
ment with limited introns.
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6.23 Modify the recurrence for gene alignment with limited introns so that the alignment
must start with a start codon, end with a stop codon, and contain GT and AG

dinucleotides at intron boundaries. Can you still solve the problem in O(mn·maxin)
time? Since there are rare exceptions when dinucleotides at intron boundaries are
something else, how can you make the requirement softer?

6.24 Give an alternative proof for the NP-hardness of the longest common subsequence
problem on multiple sequences, by using a reduction from the vertex cover problem
defined on page 16. Hint. From a graph G = (V = {1, . . . , |V |}, E) and integer
k, construct |E| + 1 sequences having LCS of length |V | − k if and only if there is
vertex cover of size k in G. Recall that vertex cover V ′ is a subset of V such that
all edges in E are incident to at least one vertex in V .

6.25 Develop a sparse dynamic programming solution for computing the longest common
subsequence of multiple sequences. What is the expected size of the match set on
random sequences from an alphabet of size σ? Hint. The search tree can be extended
to higher-dimensional range queries using recursion (see the range trees from the
computational geometry literature).

6.26 Reformulate the DAG-path alignment problem (Problem 6.19 on page 105) as a
local alignment problem. Show that the Smith-Waterman approach extends to this,
but is there a polynomial algorithm if one wishes to report alignments with negative
score? Can the affine gap cost alignment be extended to the DAG-path alignment?
Can one obtain a polynomial time algorithm for that case?

6.27 Show how to use DAG-path alignment to align a protein sequence to DNA. Hint.
Represent the protein sequence as a codon-DAG replacing each amino acid by a
sub-DAG representing its codons.

6.28 Consider a DAG with predicted exons as vertices and arcs formed by pairs of exons
predicted to appear inside a transcript: this is the splicing graph considered in
Chapter 15. Detail how DAG-path alignment on splicing graph and the codon-
DAG of previous assignment solves eukaryote gene alignment problem.

6.29 Reformulate jumping alignment so that A is just aligned to the sequences forming
the multiple alignment and not to the existing gaps inside the multiple alignment,
as in Example 6.21. Show that the reformulated problem can be solved as fast as
the original one.

Additional exercises not in the book

6.30 Compute the global alignment scores sij and especially smn = S(A,B) forA =ACCGATG

and B =ACGGCTA using indel penalty −d, where d = 1, and the substitution matrix:

s(a, b) A C G T

A 1 −1 −0.5 −1
C −1 1 −1 −0.5
G −0.5 −1 1 −1
T −1 −0.5 −1 1
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Trace an optimal alignment.

Rather than simulating on paper, you can also opt to implement. You may use the
edit distance code at

http://www.genome-scale.info/implementations/dp2tikz.py

as a basis. The resulting TikZ-code can be included in a LATEXdocument to visualize
the result:

\documentclass{article}

\usepackage{tikz}

\begin{document}

\begin{tikzpicture}[scale=6.0]

\input{dp.tikz}

\end{tikzpicture}

\end{document}

6.31 Compute the local alignment scores li,j for the same example as above. Trace an
optimal local alignment.

6.32 In the affine gap model, the gaps are defined as runs of indels. Consider the alter-
native definition of gaps as runs of insertions or runs of deletions, briefly discussed
in the main text. Derive the details of the basic recurrence to solve this variant.

6.33 Consider the setting above. Modify Gotoh’s algorithm to handle the runs of inser-
tions and runs of deletions separately. Hint. You will need three tables.

6.34 Consider the setting above. Modify the invariant-based algorithm to handle runs of
insertions and runs of deletions separately.

6.35 Write a program (e.g. in Python) to read the k-th order distribution of a given
DNA sequence (for given k), and to generate a new sequence of the same length
simulating the output of this k-th order Markov chain.

6.36 BLAST is a heuristic aligner that makes local alignment feasible in large sequence
databases. The following describes the main principles of BLAST with some simpli-
fications. The database is indexed using a k-mer index, where each substring W of
length k is associated with a list of pointers to the occurrence of W in the database.
The lists of pointers of k-mers that are within Hamming distance 1 from some sub-
string of a query sequence give the candidate occurrences. Dynamic programming
is applied to extend candidate occurrences and to join nearby candidates, to form
the final alignment results.

Show that BLAST is a lossy filter, meaning that it might miss some optimal local
alignments.

6.37 Implement the k-mer index, e.g. by modifying your code for the k-th order Markov
chain assignment above. The basic version is enough without considering how to
compress the lists of occurrences (see Chapter 8. Classical indexes for more details
about k-mer indexes).
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6.38 Implement BLAST-like search on top of the k-mer index of the previous assignment
to report candidate occurrences. You can ignore the dynamic programming part.

6.39 While there are many alternatives to BLAST that obtain better filtering accuracy,
speed, and space, the popularity of BLAST is mostly explained by its handling of
statistical significance of the found alignments. Rather than ranking alignments
directly by maximum score, it takes into account the probability of finding equally
good alignments by chance. Get familiar with this process by reading this tutorial
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/. Be ready to explain the main
concepts.
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