
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2015
www.genome-scale.info

Exercises for Chapter 9. Burrows–Wheeler indexes

9.1 Consider the original definition of the Burrows–Wheeler transform with the cyclic
shifts, without a unique endmarker # added to the end of the string. Assume you
have a fast algorithm to compute our default transform that assumes the endmarker
is added. Show that you can feed that algorithm an input such that you can extract
the original cyclic shift transform efficiently from the output.

9.2 Describe an algorithm that builds the succinct suffix array of a string T from the
BWT index of T , within the bounds of Theorem 9.6.

9.3 Consider the strategy for answering a set of occ locate queries in batch described in
Section 9.2.4. Suppose that, once all positions in SAT# have been marked, a bitvec-
tor marked[1..n+ 1] is indexed to answer rank queries. Describe an alternative way
to implement the batch extraction within the same asymptotic time bound as the
one described in Section 9.2.4, but without resorting to radix-sort. Which strategy
is more space-efficient? Which one is faster? The answer may vary depending on
whether occ is small or large.

9.4 Recall that at the very end of the construction algorithm described in Section 9.3
we need to convert the BWT of the padded string X into the BWT of string T#.
Prove that BWTX = T [n] · #k−1 · W and BWTT# = T [n] · W , where n = |T |,
k = |X| − n, and string W is a permutation of T [1..n− 1].

9.5 Assume that you have a machine with P processors that share the same memory.
Adapt Algorithm 9.3 to make use of all P processors, and estimate the resulting
speedup with respect to Algorithm 9.3.

9.6 Recall that Property 1 is key for implementing Algorithm 9.3 with just one BWT.
Prove this property.

9.7 In many applications, the operation enumerateLeft(i, j), where [i..j] = I(W,T ),
is immediately followed by operations extendLeft (c, I(W,T ), I(W,T )) applied to
every distinct character c returned by enumerateLeft(i, j).

(a) Show how to use operation rangeListExtended(T, i, j, l, r) de-
fined in Exercise 3.12 to efficiently support a new operation called
enumerateLeftExtended(I(W,T ), I(W,T )) that returns the distinct char-
acters that appear in substring BWTT#[i..j], and for each such character c
returns the pair of intervals computed by extendLeft (c, I(W,T ), I(W,T )).
Implement also the symmetric operation enumerateRightExtended.

(b) Reimplement Algorithm 9.3 to use the operations enumerateLeftExtended

and enumerateRightExtended instead of enumerateLeft, enumerateRight,
extendLeft, and extendRight.

1



9.8 Recall that Property 2 is key for navigating the Burrows–Wheeler index of a labeled
tree top-down (Section 9.5.1). Prove this property.

9.9 Consider the Burrows–Wheeler index of a tree T described in Section 9.5.

(a) Given a character c ∈ [1..σ], let
q
c be the starting position of its interval

q q
c in

BWTT , and let C ′[1..σ] be an array such that C ′[c] =
q
c. Describe an O(n)-time

algorithm to compute C ′ from C and last.

(b) Recall that I(v) = [
q
v..

q
v] is the interval in BWTT that contains all the children

of node v, and that I′(v) is the position of the arc (v, parent(v)) in BWTT .
Let D[1..n+m− 1] be an array such that D[i] =

q
v where I′(v) = i, or −1 if v

is a leaf. Describe an O(n + m)-time algorithm to compute D from C ′, last
and labels. Hint. Use the same high-level strategy as the one in Lemmas 8.7
and 9.9.

(c) Give the pseudocode of an O(n)-time algorithm that reconstructs the original
tree T from BWTT and D, in depth-first order.

9.10 In order to build the Burrows–Wheeler index of a tree T described in Section 9.5, we
can adapt the prefix-doubling approach used in Lemma 8.8 for building suffix arrays.
In particular, assume that we want to assign to every node v the order R(v) of its
path to the root, among all such paths in T . We define the ith contraction of tree T
as the graph T̃ i = (V,Ei) such that (u, v) ∈ Ei iff v1, v2, . . . , v2i+1 is a path in T with
v0 = u and v2i+1 = v. Clearly T̃ 0 = T , and Ei+1 is the set of all pairs (u, v) such that
P = u,w, v is a path in T̃ i. Show how to iteratively refine the value R(v) for every
node, starting from the initial approximation R0(v) =

q̀
(v) = C ′[`(v)] computed as

in Exercise 9.9. Describe the time and space complexity of your algorithm.

9.11 Assume that we want to generalize the recursive, O(σ+n)-time algorithm for build-
ing the suffix array SAS# of a string S to a similar algorithm for building the
Burrows–Wheeler index of a labeled tree T described in Section 9.5. Do the results
in Definition 8.9, Lemma 8.10, and Lemma 8.11 still hold? Does the overall gener-
alization still achieve linear time for any T ? If not, for which topologies or labelings
of T does the generalization achieve linear time?

9.12 Assume that a numerical value id(v) must be associated with every vertex v of a
labeled, strongly distinguishable DAG G: for example, id(v) could be the probabil-
ity of reaching vertex v from s. Assume that, whenever there is exactly one path P
connecting vertex u to vertex v, we have that id(v) = f(id(u), |P |), where f is a
known function. Describe a method to augment the Burrows–Wheeler index of G
described in Section 9.6 with the values of id, and its space and time complexity.
Hint. Adapt the strategy used for strings in Section 9.2.3.

9.13 Consider the Burrows–Wheeler index of a labeled, strongly distinguishable DAG
described in Section 9.6, and assume that labels is represented with σ+1 bitvectors
Bc[1..m] for all c ∈ [1..σ+1], where Bc[i] = 1 if and only if labels[i] = c. Describe a
more space-efficient encoding of labels. Does it speed up the operations described
in Section 9.6?

9.14 Given any directed labeled graph G = (V,E,Σ), Algorithm 9.4 builds a reverse-
deterministic graph G′ = (V ′, E′,Σ) in which a vertex v ∈ V ′ corresponds to a
subset of V . Adapt the algorithm so that a vertex v ∈ G′ corresponds to a subset

2



of E. Show an example in which the number of vertices in the reverse-deterministic
graph produced by this version of the algorithm is smaller than the number of
vertices in the reverse-deterministic graph produced by Algorithm 9.4.

9.15 Recall that in Section 9.6.3 a labeled DAGG is transformed into a reverse-deterministic
DAG G′, and then G′ is itself transformed into a strongly distinguishable DAG G∗.
Show that |G∗| ∈ O(2|G|) in the worst case.

9.16 Consider the algorithm to enforce distinguishability described in Section 9.6.3.

(a) Show that this algorithm does not also enforce reverse-determinism.

(b) Assume that the input to this algorithm contains two arcs (u,w) and (v, w)
such that `(u) = `(v): give an upper bound on the number of vertices that
result from the projection of u and v to the output.

(c) Modify the algorithm to build a distinguishable, rather than a strongly distin-
guishable, DAG.

(d) Modify the algorithm to decide whether the input graph is distinguishable or
not.

(e) Implement the algorithm using just sorts, scans, and joins of lists of tuples
of integers, without storing or manipulating strings path explicitly. Give the
pseudocode of your implementation.

(f) Give the time and space complexity of the algorithm as a function of the size
of its input and its output.

9.17 Describe a labeled, strongly distinguishable DAG that recognizes an infinite lan-
guage. Describe an infinite language that cannot be recognized by any labeled,
stronglyvdistinguishable DAG.

9.18 Consider the frequency-oblivious representation of a de Bruijn graph described in
Section 9.7.1. Show how to implement the function getArc when labels contains
characters in Σ ∪ Σ′.

9.19 Recall that marking the starting position of every interval in BWTT# that cor-
responds to a k-mer is a key step for building both the frequency-aware and the
frequency-oblivious representation of a de Bruijn graph. Prove that Lemma 9.22
performs this marking correctly.

9.20 Some applications in high-throughput sequencing require the de Bruijn graph of
a set of strings R = {R1, R2, . . . , Rr}. Describe how to adapt the data struc-
tures in Sections 9.7.1 and 9.7.2 to represent the de Bruijn graph of string R =
R1#R2# · · ·#Rr#, where # /∈ [1..σ]. Give an upper bound on the space taken by
the frequency-oblivious and by the frequency-aware representation.

9.21 Describe the frequency-oblivious and the frequency-aware representations of the de
Bruijn graph DBGT,k when every string of length k on a reference alphabet Σ occurs
at most once in T .

3


