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Exercises for Chapter 15. Pangenomics

15.1 Recall the colored de Bruijn graph from Section 15.1.1. If every one of the d colors
corresponds to a distinct short read rather than to a whole genome or haplotype, one
might consider reducing d by reusing the same color across different reads. Assume
that every read corresponds to a path with no repeated vertices, and that colors
must allow one to reconstruct all and only the original reads. Which pairs of reads
must be assigned different colors?

15.2 Consider the right-to-left de Bruijn graph traversal of Insight 15.1. Describe the
details of how to implement it using the suffix tree of the set of walks P . Do you
need the whole suffix tree? How would you implement a left-to-right traversal?

15.3 Compacting a de Bruijn graph means repeatedly merging into a single vertex every
pair of adjacent vertices (u, v) such that v is the only right-neighbor of u, and u is
the only left-neighbor of v, until no such merge is possible. This notion is related to
the unitigs from Section 13.2, and it is especially useful for sets of genomes from the
same species. We assume that the vertices of the non-compacted de Bruijn graph
are strings of length k.

(i) Describe the compacted de Bruijn graph of the de Bruijn string defined in
Exercise 11.7, where the graph and the string have the same order k.

(ii) Show how to build the compacted de Bruijn graph directly from the suffix tree
of the input sequences in linear time.

(iii) Implement a compacted de Bruijn graph using the frequency-aware represen-
tation of the standard de Bruijn graph from Section 9.7.2. How would you
enforce the additional constraint that every vertex of the compacted graph
must occur in some input sequence?

(iv) Given a substring of length at least k of a vertex of the compacted de Bruijn
graph, describe how to find the vertex it belongs to using the previous repre-
sentation.

15.4 Given a pangenome, it is natural to look for the common parts that are shared
by many individuals (the core genome), since they most likely code for essential
traits. This has obvious applications in finding targets for vaccines or antibacterials.
Assume that the pangenome is represented as a colored de Bruijn graph whose nodes
correspond to k-mers. Let a core k-mer be one with at least c colors, and let a
bridging k-mer be any k-mer that lies on a walk of length at most ` between two
core k-mers. Describe an algorithm that computes all core and bridging k-mers in
linear time in the number of k-mers. What advantages and disadvantages does this
definition of core have?

15.5 Given a reference sequence and a sequence-to-graph aligner, describe an algorithm
that grows a pangenome graph by iteratively aligning assembled contigs or long reads
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to the current graph. Does the graph contain cycles? Does its structure depend on
the order with which the sequences are added? How are inversions represented?

15.6 Pangenome graphs are often required to support positional queries: Given an integer
i and a haplotype T from a large population, find the node of the graph that contains
the i-th position of T . This is useful for changing the frame of reference, or for
finding the variant closest to i in T . Describe how to support positional queries,
assuming that all the haplotypes are represented as sequences of node identifiers in
the pangenome DAG, and that the concatenation of all such strings is stored in a
BWT as described in Insight 15.4.

15.7 Show how to use the data structures covered earlier in this book to support fast
exact pattern matching on the indexable founder graphs studied in Section 15.1.2.

15.8 Fill in the details on how to efficiently construct the indexable founder graphs of
Section 15.1.2.

15.9 Given a large set of genomes S from the same species, assume that we select a small
subset T ⊂ S that captures most of the variation, and that we concatenate all the
elements of T into a string T . Assume also that we are given the relative Lempel–Ziv
factorization of every element of S \T with respect to T (see Insight 12.3). Describe
a way to build a directed pangenome graph for S by scanning the factorization and
T . Does the choice of the source of a factor affect the graph?

15.10 van Emde Boas tree Consider the pangenome read alignment scheme described in
Section 15.2.1. Develop the bookkeeping data structures to map alignment position
from the patched sequence B to the position in T .

15.11 Consider the pangenome read alignment scheme described in Section 15.2.1. Show
how the wavelet tree can be used to retrieve secondary occurrences, each in O(log n)
time.

15.12 Consider the pangenome read alignment scheme described in Section 15.2.1 and
recall Exercise 3.6. Show how to use van Emde Boas trees to retrieve secondary
occurrences, each in O(log log n) time.

15.13 Show that r-index supports accessing L[i] in O(log n) time using the data structures
we constructed for L′, where L′[1..r] is the run-length encoding of L[1..n].

15.14 Show that the data structures of the r-index that support reporting locations can be
constructed as fast and as space-efficiently as the structures that support backward
search. Hint: Mimic the algorithm that builds the samples for the regular succinct
suffix array.

15.15 Show that the r-index can be made functionally equivalent to the bidirectional BWT
index of Section 9.4. Namely, it suffices to show that operation rangeCount(L, sp, ep, 0, c−
1), which counts how many characters there are in L[sp..ep] smaller than c, can
be supported in O(log n) time using only L′[1..r], where L′ is the run-length en-
coding of L. The structure to support the operation should be constructed in
O((σ + r) log n log σ) time, and it should take O((σ + r) log n log σ) bits of space.

15.16 Show how to compute values κ(i) for prefix pruning for prefixes P1..i of the pattern
P in the case of the BWT index on a labeled DAG.
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15.17 Give a pseudocode for listing all the subpaths matching a pattern using the BWT
index of the labeled DAG. Extend the algorithm given in Section 15.2.3 for listing
the matching prefix of a path starting at vertex v with smallest lexicographic order.

15.18 Show that Problem prob:heaviestrecombinationpath can be reduced to the particu-
lar shortest-path problem on DAGs from Exercise 4.16.

15.19 Under what assumptions does the shortest-detour algorithm of Section 6.1.2, applied
to aligning a haploid prediction to the labeled DAG of a diploid ground-truth, give
O(dn) running time, where d is the resulting edit distance and n is the largest of
DAG size and haploid length?

15.20 A series-parallel graph G is either a single edge that connects a source node to a
sink node, or it is the result of merging the sink of a series-parallel graph G1 to the
source of a series-parallel graph G2 (series composition), or of merging the source of
G1 to the source of G2 and the sink of G1 to the sink of G2 (parallel composition).
A bubble is the result of all parallel compositions that affect the same source and
sink nodes. Assume that we are given a pangenome graph G that is a series-parallel
graph with arbitrary string labels on the nodes, and with a small number of bubbles.
Describe a representation of G as a string T , such that all the paths inside the same
bubble correspond to a compact block in the BWT of T , and such that one can count
the occurrences of a pattern in G via a modified backward search in the BWT of
T . How much space does your data structure take? Hint: Apply ideas from the
positional BWT in Section 14.2.2.
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