
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2nd edition, 2023
www.genome-scale.info

Exercises for Chapter 3. Data structures

3.1 Give an example of a perfectly balanced binary search tree storing eight (key,value)
pairs in its leaves as described in Lemma 3.1. Give an example of a range minimum
query for some non-empty interval.

3.2 Give a pseudocode for the algorithm to construct and initialize a balanced binary
search tree given the sorted keys.

3.3 Recall how red–black trees work. Revisit the proof of Lemma 3,1, and consider how
the tree can be maintained correctly updated for RMQ queries during the rebalancing
operations needed if one adds the support for Insert and Delete.

3.4 Instead of taking the minimum among the values in Lemma 3.1 one could take
a sum. If all leaves are initialized to value 1, what question does the operation
analogous to RMQ answer?

3.5 Consider the sets V ′ and V ′′ in the proof of Lemma 3.1. The subtrees rooted at
nodes in V ′ and V ′′ induce a partitioning of the set of characters appearing in the
interval [l..r] (see Figure 3.1). There are many other partitionings of [l..r] induced
by different subsets of nodes of the tree. Why is the one chosen in the proof the
minimum size partitioning? Are there other partitionings that could give the same
running time?

3.6 A van Emde Boas tree van Emde Boas tree (vEB tree) supports insertions, deletions,
and predecessor queries for values in the interval [1..n] in O(log log n) time. A
predecessor query returns the largest element i′ stored in the vEB tree smaller than
query element i. Show how the structure can be used instead of the balanced search
tree of Lemma 3.1 to solve range minimum queries for semi-infinite intervals (−∞..i].

3.7 Prove Theorem 3.3. Start as in rank with O(log2 n) size blocks, but this time on
arguments of select1. Call these source blocks and the areas they span in bitvector
B target blocks. Define long target blocks so that there must be so few of those
that you can afford to store all answers inside the corresponding source blocks.
We are left with short target blocks. Apply the same idea recursively to these
short blocks, adjusting the definition of a long target block in the second level of
recursion. Then one should be left with short enough target blocks that the four
Russians technique applies to compute answers in constant time. The solution to
select0 is symmetric.four Russians technique

3.8 Show how to reduce the preprocessing time in Theorems 3.2 and 3.3 from O(n) to
O(n/log n), by using the four Russians technique during the preprocessing.

3.9 Consider the wavelet tree in Example 3.2 Concatenate bitvectors Br, Bv, and Bw.
Give formulas to implement the example queries in Example 3.2 with just the con-
catenated bitvector. Derive the general formulas that work for any wavelet tree.

1



3.10 Consider the operation selectc(A, j) = i that returns the position i of the jth
occurrence of character c in string A[1..n]. Show that the wavelet tree with its
bitvectors preprocessed for constant time select1(B, j) and select0(B, j) queries
can answer selectc(A, j) in O(log σ) time.

3.11 Show that the operation rangeList(T, i, j, l, r) can be supported in
O(d log(σ/d)) time by optimizing the given search strategy. Hint. After finding
the left-most element in the interval, go up until branching towards the second ele-
ment occurs, and so on. Observe that the worst case is when the elements are equally
distributed along the interval; see Section sect:kmer for an analogous analysis.

3.12 Show how to efficiently implement the operation rangeListExtended

(T, i, j, l, r) which returns not only the distinct characters from [l..r] in T [i..j], but
also, for every such distinct character c, returns the pair (rankc(T, i−1), rankc(T, j)).
Hint. Observe that the enumeration of the distinct characters uses rank queries on
binary sequences that can also be used to compute the pairs of rank operations
executed for the distinct characters.

3.13 In the proof of Lemma 3.17, show that insertions and deletions take expected O(1)
time.

3.14 In the proof of Lemma 3.18, show how to implement checking that there is no
collision in (expected) linear time and linear space.

3.15 Show how to reduce the space used by the data structure from Lemma 3.19 to O(n)
bits while keeping the same construction and query times. Hint. Represent vectors
G and T using bitvectors augmented with rank and select support.

3.16 Show how to implement an approximate membership data structure which uses
space O(n(1 + log(1/p)) using perfect hashing and universal hash functions. Hint:
use the construction from the previous exercise, a universal hash function, and bit-
packing.

3.17 Show that rolling Karp–Rabin hashing is universal.

3.18 Develop an alternative linear time algorithm for the sliding window minima prob-
lem discussed in the context of minimizers. In this problem, you are given an array
A[1..n] of values and the window length w, and you should compute argminj∈[i..i+w−1]A[j]
for each 1 ≤ i ≤ n−w+ 1. Hint. When sliding the window from left to right, main-
tain in a linked list all pairs (i, A[i]) that can still become minima of some future
window. The leftmost value in the list should be the minimum of the current window
(essentially this list should match the rightmost path of the corresponding Cartesian
tree).

2


