
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2nd edition, 2023
www.genome-scale.info

Exercises for Chapter 4. Graphs

4.1 Find a family of DAGs in which the number of topological orderings is exponential
in the number of vertices.

4.2 Find a family of DAGs with a number of distinct paths exponential in the number
of vertices.

4.3 Show that a directed graph G is acyclic (does not contain a directed cycle) if and
only if, for every subset of vertices S ⊆ V (G), there exists a vertex v ∈ S such that
no out-neighbor of v belongs to S. Conclude that a DAG must have at least one
sink.

4.4 Show that a directed graph G is acyclic if and only if it admits a topological ordering
(the forward implication is Theorem 4.1). Conclude that we can check in O(m) time
whether a directed graph is acyclic.

directed acyclic graph

4.5 Let G be a DAG with precisely one source s and one sink t. Show that for any
v ∈ V (G) \ {s, t} there exists a path from s to v and a path from v to t.

4.6 Let G be a DAG with a unique source. Prove that G is connected.

4.7 Explain in detail how the connectivity assumption is exploited in the proof of The-
orem 4.3.

4.8 Show how the procedure in Theorem 4.3 can be implemented in time O(m).

4.9 Consider a directed graph G in which for every pair of vertices u, v ∈ V (G) exactly
one of (u, v) ∈ E(G) or (v, u) ∈ E(G) holds (such a graph is called a tournament).
Show that there exists a path in G passing through all vertices exactly once (such
a path is called Hamiltonian pathHamiltonian).

4.10 Let G be an undirected graph. Show that either G or its complement G is connected.

4.11 Give an algorithm running in time O(n + m) that checks whether an undirected
graph G is connected, and if not, lists all of its connected components.

2-connected biconnected—see 2-connected

4.12 A connected undirected graph G is called 2-connected (or bi-connected) if removing
any vertex from G (along with its incident edges) results in a connected graph. Give
an algorithm running in time O(m) for checking whether a graph is
2-connected.

4.13 Refine the algorithm from Exercise 4.12 so that it also outputs the 2-connected
components of G (that is, the maximal 2-connected subgraphs of G).

1

4.14 Given an undirected graph G, consider the graph B(G) of 2-connected components
of G: the vertices of B(G) are the 2-connected components of G, and we add an
edge between two vertices of B(G) if the corresponding 2-connected components of
G have a vertex in common. Show that B(G) is a tree.

4.15 Consider a directed graph G, a vertex s ∈ V (G), and c : E(G)→ Q so that no cycle
of G has negative cost. Show that if G has only two 2-connected components C1

and C2, sharing a vertex v, such that s ∈ V (C1), then we can solve the shortest-
path problem on G by solving it independently on C1 and C2, by appropriately
initializing the dynamic programmingdynamic programming algorithm on C2 at
vertex v. shortest path

4.16 Consider a DAG G, a vertex s ∈ V (G), a cost function c : E(G) → Q, a partition
S = {S1, . . . , Sk} of V (G), and an integer t ≤ k. Give a dynamic programming
algorithm for computing a shortest path from s to any other vertex of G that that
changes the partite sets of S at most t times. What is the complexity of your
algorithm? What if G is not acyclic?

4.17 Consider a DAG G, a partition S = {S1, . . . , Sk} of V (G), and an integer t ≤ k. We
say that a path P = u1, u2, . . . , u` in G is t-restricted if every maximal subpath of P
of vertices from the same set of S has at least t vertices. (In other words, if P starts
using vertices from a set Si ∈ S, then it must do so for at least t vertices.) Give a
dynamic programming algorithm that is additionally given a vertex s ∈ V (G) and
a cost function c : E(G) → Q, and finds a t-restricted shortest path from s to any
other vertex of G. What is the complexity of your algorithm? What if G is not
acyclic?

4.18 Given a directed graphG = (V,E), n = |V |, m = |E|, and a cost function c : E → Q,
we say that the length of a cycle C = v1, v2, . . . , vt, vt+1=v1 in G, denoted l(C) is t,
its cost, denoted c(C), is

∑t
i=1 c(vi, vi+1), and its mean cost is µ(C) = c(C)/l(C).

Denote by µ(G) the minimum mean cost of a cycle of G, namely

µ(G) = min
C cycle of G

µ(C).

(a) For each v ∈ V (G), and each k ∈ {0, . . . , n}, let d(v, k) be the minimum cost of
a path in G with exactly k edges, ending at v (where d(v, 0) = 0 by convention).
Show that the bi-dimensional array d can be computed in time O(nm).

(b) Show that

µ(G) = min
v∈V

max
0≤k≤n−1

d(v, n)− d(v, k)

n− k
, (1)

by showing the following facts. Consider first the case µ(G) = 0, and show
that

• for any v ∈ V , there exists a k ∈ {0, . . . , n−1} such that d(v, n)−d(v, k) ≥
0, thus, the right-hand side of Equation (1) is greater than or equal to 0;

• each cycle of G has non-negative cost: if C is a cycle of G, then there
exists a vertex v on C such that, for every k ∈ {0, . . . , n− 1}, it holds that
d(v, n)− d(v, k) ≤ c(C); and

• a cycle C of minimum mean cost µ(C) = 0 also has c(C) = 0; use the
above bullet to show that the right-hand side of Equation (1) is equal to
0.

2

Conclude the proof of Equation (1) by considering the case µ(G) 6= 0. Show
that

• if we transform the input (G, c) into (G, c′) by subtracting µ(G) from the
cost of every edge, then the minimum mean cost of a path of (G, c′) is 0,
and the paths of minimum mean cost of (G, c) are the same as those of
(G, c′); and

• since relation (1) holds for (G, c′), it holds also for the original input (G, c).

(c) Use (a) and the proof of (b) to conclude that a minimum mean cost cycle C
in G can be found in time O(nm).

3

