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Exercises for Chapter 7. Hidden Markov models (HMMs)

7.1 Argue that O(|H|) working space suffices in Problem 7.3 to compute the final nu-
merical value (not the actual solution path) with the Viterbi algorithm, and in
Problem 7.4 with the forward and backward algorithms.

7.2 To traceback the solution of Viterbi algorithm, the naive solution requires O(n|H|)
working space. Show that this can be improved to O(

√
n|H|) by sampling every√

nth position in S, without asymptotically affecting the running time of the trace-
back.

7.3 The standard algorithm for the multiplication of two matrices of m rows by m
columns takes time O(m3). More sophisticated approaches achieve time O(mω)
with ω < 3 (the current record is ω ≤ 2.38 and ω = 2 is the best one can hope for).
Suppose that we have to compute many instances of the forward and backward
algorithms on different sequences, but on the same HMM. Show how to use fast
matrix multiplication to improve the running time of such a computation.

7.4 Given an HMM and a sequence S = s1 · · · sn, derive an O(n|H|) time algorithm to
compute, for all h ∈ H,

argmax
i
{P(P, s1 · · · sn) | P = p0p1 · · · pnpn+1 ∈ P(n) and pi = h}. (1)

7.5 Multiplication is the source of numerical errors in HMM algorithms, when the num-
bers become too large to fit into a computer word. Show how the Viterbi algorithm
can be implemented using a sum of logarithms to avoid these numerical problems.

7.6 For the forward and backward algorithms the sum of logarithms conversion is not
enough for numerical stability. Browse the literature to find a solution for this
problem.

7.7 The flexibility of choosing the states, transitions, emissions, and their probabilities
makes HMMs a powerful modeling device. So far we have used a zeroth-order
Markov model for emission probabilities (probabilities only depended on the state,
not on the sequence context). We could just as well use first-order Markov chains
or, more generally, k-th order Markov chains, in which the probability depends on
the state and on the last k symbols preceding the current one: P(si | si−k · · · si−1) =
P(si | s1 · · · si−1).

Notice that the states of the HMM are independent, in the sense that each state
can choose a Markov chain of a different order from that of the Markov chain for its
emission probabilities. In addition to the use of different order Markov chains, we
could adjust how many symbols are emitted in each state. Use these considerations
to design a realistic HMM for eukaryote gene prediction. Try to take into account
intron/exon boundary di-nucleotides, codon adaptation, and other known features
of eukaryote genes. Consider also how you can train the HMM.
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Figure 1: Profile HMM illustration without showing the transition and emission proba-
bilities.

7.8 Profile HMMs are an extension of HMMs to the problem of aligning a sequence with
an existing multiple alignment (profile). Consider for example a multiple alignment
of a protein family:

AVLSLSKTTNNVSPA

AV-SLSK-TANVSPA

A-LSLSK-TANV-PA

A-LSSSK-TNNV-PA

AS-SSSK-TNNV-PA

AVLSLSKTTANV-PA

We considered the problem of aligning a sequence A against a profile in the context of
progressive multiple alignment in Section 6.6.4, and the idea was to consider the mul-
tiple alignment as a sequence of columns and apply normal pair-wise alignment with
proper extensions of substitution and indel scores. Consider A = AVTLSLSTAANVSPA

aligned to our example profile above, for example, as follows:

AVTLSLS--TAANVSPA

AV-LSLSKTTN-NVSPA

AV--SLSK-TA-NVSPA

A--LSLSK-TA-NV-PA

A--LSSSK-TN-NV-PA

AS--SSSK-TN-NV-PA

AV-LSLSKTTA-NV-PA

Here we have added two gaps to the sequence and two gap columns to the profile
following the “once a gap, always a gap” principle.

Profile HMMs are created using inhomogeneous Markov chains, such that each of
the columns will form separate match, insertion, and deletion states, and transitions
go from left to right, as illustrated in Figure 1. Match and deletion states emit the
columns of the profile, so they do not contain self-loops. Insertion states emit
symbols from the input sequence, so they contain self-loops to allow any number of
symbols emitted between states that emit also columns of the profile.

Since the resulting HMM is reading only one sequence, the Viterbi, forward, and
backward algorithms are almost identical to the ones we have studied so far. The
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only difference is that deletion states are silent with respect to the input string,
since they do not emit any symbol.

a) Modify the Viterbi recurrences to handle both emitting and silent states.

b) Derive the Viterbi recurrences specific to profile HMMs.

7.9 Derive a local alignment version of profile HMMs.

7.10 Pair HMMs are a variant of HMMs emitting two sequences, such that a path through
the HMM can be interpreted as an alignment of the input sequences. Such pair
HMMs have a match state emitting a symbol from both sequences simultaneously,
and symmetric insertion and deletion states to emit only from one input sequence.

a) Fix a definition for pair HMMs and derive the corresponding Viterbi, forward,
and backward recurrences. Hint. The result should look very similar to Gotoh’s
algorithm for global alignment with affine gap costs from Section 6.4.4.

b) Apply a derivation for pair HMMs similar to the ones we used in obtaining
relation (7.13), in order to define the probability of ai aligning to bj over all
alignments of A = a1 · · · am and B = b1 · · · bn.

c) Let pij denote the probability derived above to align ai to bj . We say that
the most robust alignment of A and B is the alignment maximizing the sum
of values pij over i, j such that the ai → bj substitution is part of the align-
ment. Derive a dynamic programming algorithm to compute this most robust
alignment.

Additional exercises not in the book

7.11 Assume a set of DNA sequences with coding/non-coding labeling. Implement a
program that trains the emission/transition probabilities for the coding/non-coding
HMM considered at the book, given the training data.

7.12 Implement the Viterbi algorithm in the special case of the coding/non-coding HMM.
Implement also the tracing back of the optimal path and deduce the labels for some
example sequence. If you did the previous assignment, train the HMM with some
other example sequence.

7.13 Familiarize yourself with the HMM package of Biopython: http://biopython.org/
DIST/docs/api/Bio.HMM-module.html. Explain how the provided functions match
the description in the book.

7.14 Use Biopython to run the Viterbi algorithm on the coding/non-coding HMM.
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