
GENOME-SCALE ALGORITHM DESIGN
by Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu
Cambridge University Press, 2nd edition, 2023
www.genome-scale.info

Exercises for Chapter 8. Classical indexes

8.1 Consider a k-mer index in which the pointers to the lists of occurrences of k-mers
are encoded using a table of size σk in which the ith element is a pointer to the
list of the occurrence positions of k-mer P = p1p2 · · · pk in T = t1t2 · · · tn for i =
p1 · σk−1 + p2 · σk−2 + · · · + pk, where each pj ∈ {0, 1, . . . , σ − 1}. Show that both
this table and the gamma-encoded lists can be constructed in O(σk + n) time by
two scans from left to right over T . Hint. Use a first scan to determine the size of
the lists and a second scan to fill both the lists and the table.

8.2 The table of the previous assignment is sparse if k is large. Show that by using
techniques from Section 3.2 one can represent the table in σk(1 + o(1)) + ` log(n+
2n log `) bits, where ` is the number of non-empty lists, while still retaining constant-
time access to the list. Hint. Use a bitvector marking the non-empty elements and
supporting rank queries. Concatenate all encodings of the occurrence lists and store
a pointer to the starting position of each list inside the concatenation.

8.3 Show how to represent the pointer table of the previous assignment in σk(1+o(1))+
(`+n(1 + 2 log `))(1 +o(1)) bits. Hint. Use a bitvector supporting rank queries and
another supporting select queries.

8.4 Derive an analog of Theorem 8.2 replacing γ-coding with δ-coding. Do you obtain
a better bound?

8.5 The order-k de Bruijn graph on text T = t1t2 · · · tn is a graph whose vertices are
(k − 1)-mers occurring in T and whose arcs are k-mers connecting (k − 1)-mers
consecutive in T . More precisely, let label(v) = α1α2 · · ·αk−1 denote the (k − 1)-
mer of vertex v and label(w) = β1β2 · · ·βk−1 the (k− 1)-mer of vertex w. There is
an arc e from vertex v to w with label(e) = α1α2 · · ·αk−1βk−1 iff α2α3 · · ·αk−1 =
β1β2 · · ·βk−2 and label(e) is a substring of T . See Section 9.7 for more details
on de Bruijn graphs and on their efficient representation. Modify the solution to
Exercise 8.1 to construct the order-k de Bruijn graph.

8.6 The table of size σk on large k makes the above approach infeasible in practice.
Show how hashing can be used for lowering the space requirement.

8.7 Another way to avoid the need for a table of size σk is to use a suffix array (enhanced
with an LCP array) or a suffix tree. In the suffix tree of T , consider all paths from
the root that spell strings of length k; these are the distinct k-mers occurring in
T . Consider one such path labeled by X ending at an edge leading to node v. The
leaves in the subtree of v contain all the suffixes prefixed by k-mer X in lexicographic
order. Show that one can sort all these lexicographically sorted lists of occurrences
of k-mers in O(n) time, to form the k-mer index.

8.8 Modify the approach in the previous assignment to construct the de Bruijn graph
in linear time.

1

8.9 Visualize the suffix array of the string ACGACTGACT# and simulate a binary search
on the pattern ACT.

8.10 Recall the indicator vector I[1..n] for string T = t1t2 · · · tn with I[i] = 1 if suffix
Ti..n is small, that is, Ti..n < Ti+1..n, and I[i] = 0 otherwise. Show that it can be
filled with one O(n) time scan from right to left.

8.11 Recall R and SAR from the linear-time suffix array construction. Give pseudocode
for mapping SAR to suffix array SAT of T so that SAT [i] is correctly computed for
small suffixes.

8.12 Give the pseudocode for the linear-time algorithm sketched in the main text to fill
suffix array entries for large suffixes, assuming that the entries for small suffixes
have already been computed.

8.13 We assumed there were fewer small suffixes than large suffixes. Consider the other
case, especially, how does the string sorting procedure need to be changed in order
to work correctly for substrings induced by large suffixes? Solve also the previous
assignments switching the roles of small and large suffixes.

8.14 Show how to compute the LCP[2..n] array in linear time given the suffix array. Hint.
With the help of the inverse of the suffix array, you can scan the text T = t1t2 · · · tn
from left to right, comparing suffix t1t2 · · · with its predecessor in suffix array order,
suffix t2 · · · with its predecessor in suffix array order, and so on. Observe that the
common prefix length from the previous step can be used in the next step.

8.15 Visualize the suffix tree of a string ACGACTGACT and mark the nodes corresponding
to maximal repeats. Visualize also Weiner links.

8.16 Consider the suffix tree built from the suffix array. Give a linear-time algorithm to
compute suffix links for its leaves.

8.17 Visualize the suffix tree on a concatenation of two strings of your choice and mark
the nodes corresponding to maximal unique matches. Choose an example with
multiple nodes with two leaf children, of which some correspond to maximal unique
matches, and some do not.

8.18 Show that the number of implicit Weiner links can be bounded by 2n − 2. Hint.
Show that all implicit Weiner links can be associated with unique edges of the suffix
tree of the reverse.

8.19 Show that the number of implicit Weiner links can be bounded by n. Hint. Charac-
terize the edges where implicit Weiner links are associated in the reverse. Observe
that these edges form a subset of a cut of the tree.

8.20 Recall the indicator vector I[1..|C|] in the computation of MUMs on multiple se-
quences. Show how it can be filled in linear time.

8.21 The suffix trie is a variant of suffix tree, where the suffix tree edges are replaced by
unary paths with a single character labeling each edge: the concatenation of unary
path labels equals the corresponding suffix tree edge label. The suffix trie can hence
be quadratic in the size of the text (which is a reason for the use of suffix trees
instead). Now consider the suffix link definition for the nodes of the suffix trie that
do not correspond to nodes of suffix tree. We call such nodes implicit nodes and

2

such suffix links implicit suffix links of the suffix tree. Show how to simulate an
implicit suffix link sl(v, k) = (w, k′), where k > 0 (k′ ≥ 0) is the position inside
the edge from the parent of v to v (the parent of w to w), where v = (v, 0) and
w = (w, 0) are explicit nodes of the suffix tree and (v, k) (possibly also (w, k′)) is
an implicit node of suffix tree. In the simulation, you may use parent pointers and
explicit suffix links. What is the worst-case computation time for the simulation?

8.22 Consider the following descending suffix walk by string S = s1s2 · · · sm on the suffix
trie of T = t1t2 · · · tn. Walk down the suffix tree of T as deep as the prefix of S
still matches the path followed. When you cannot walk any more, say at si, follow
a suffix link, and continue walking down as deep as the prefix of sisi+1 · · · still
matches the path followed, and follow another suffix link when needed. Continue
this until you reach the end of S. Observe that the node v visited during the walk
whose string depth is greatest defines the longest common substring of S and T : the
string X labeling the path from root to v is such substring. Now, consider the same
algorithm on the suffix tree of T . Use the simulation of implicit suffix links from
previous assignment. Show that the running time is O(σ + |T |+ |S| log σ), i.e., the
time spent in total for simulating implicit suffix links can be amortized on scanning
S.

8.23 The suffix tree can also be constructed directly without requiring the suffix array.
Online suffix tree construction works as follows. Assume you have the suffix tree
ST(i) of t1t2 · · · ti, then update it into the suffix tree ST(i + 1) of t1t2 · · · ti+1 by
adding ti+1 at the end of each suffix. Let (v1, k1), (v2, k2), . . . , (vi, ki) be the (im-
plicit) nodes of ST(i) corresponding to paths labeled t1t2 · · · ti, t2t3 · · · ti, . . ., ti,
respectively (see the assigments above for the notion of implicit and explicit nodes).
Notice that sl(vj , kj) = (vj+1, kj+1).

a) Show that (v1, k1), (v2, k2), . . . , (vi, ki) can be split into lists (v1, 0), . . . , (vl, 0),
(vl+1, kl+1), . . . , (va, ka), and (va+1, ka+1), . . . , (vi, ki) such that nodes in the
first list are leaves before and after appending ti+1, nodes in the second list
do not yet have a branch (or a next character along the edge) starting with
character ti+1, and nodes in the third list already have a branch (or a next
character along the edge) starting with character ti+1.

b) From the above it follows that the status of nodes (v1, 0), . . . , (vl, 0) remains
the same and no updates to their content are required (the start position of
the suffix is a sufficient identifier). For (vl+1, kl+1), . . . , (va, ka) a new leaf for
ti+1 needs to be created. In the case of explicit node (v, 0), this new leaf is
inserted under node v. In the case of implicit node (v, k), the edge from the
parent of v to v is split after position k, and a new internal node is created,
inheriting v as child and the old parent of v as parent, and ti+1 as a new leaf
child. The suffix links from the newly created nodes need to be created during
the traversal of the list (vl+1, kl+1), . . . , (va+1, ka+1). Once one has detected
(va+1, ka+1) being already followed by the required character and created the
suffix link from the last created node to the correct successor of (va+1, ka+1),
say (w, k′), the list does not need to be scanned further. To insert ti+2, one
can start from the new active point (w, k′) identically as above, following suffix
links until one can walk down with ti+2. Notice the analogy to descending
suffix walk, and use a similar analysis as there to show that the simulation of
implicit suffix links amortizes and that the online construction requires O(n)

3

steps (the actual running time is multiplied by an alphabet factor depending
on how the branching is implemented).

8.24 The directed acyclic word graph (DAWG) is an automaton obtained by minimizing
a suffix trie. Suppose that we build the suffix trie of a string T#. Then two nodes
v and u of the suffix trie will be merged if the substring that labels the path to v
is a suffix of the substring that labels the path to u and the frequencies of the two
substrings in T# are the same. Show that the number of vertices in the DAWG is
linear in the length of T , by showing that the following statements hold.

a) There is a bijection between the nodes of the suffix-link tree of T# and the
vertices of the DAWG labelled by strings whose frequency is at least two in
T#.

b) There is a bijection between all prefixes of T# that have exactly one occurrence
in T# and all the vertices of the DAWG labeled by strings whose frequency is
exactly one in T#.

Then show that the number of edges is also linear, by showing a partition of the
edges into three categories:

a) edges that are in bijection with the edges of the suffix link tree of T#.

b) edges that are in bijection with a subset of the edges of the suffix tree of T#,
and

c) edges that connect two nodes that are in bijection with two prefixes of T# of
lengths differing by one.

8.25 The compacted DAWG (CDAWG) of a string T# is obtained by merging every
vertex of the DAWG of T# that has just one outgoing arc with the destination of
that arc. Equivalently, the CDAWG can be obtained by minimizing the suffix tree
of T in the same way as the suffix trie is minimized to obtain the DAWG. Note that
the resulting automaton contains exactly one vertex with no outgoing arc, called the
sink. Show that there is a bijection between the set of maximal repeated substrings
of T# and the set of vertices of the CDAWG, excluding the root and the sink.

8.26 Complete the details of the O(kn) approximate string matching algorithm of Section
8.7 by giving a detailed pseudocode including initialization and reporting of the
matches.

4

